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Motivation

The widespread use of always-on voice applications

【Current】One app, one system: Inefficient design

• Our focuses

• High versatility

• Low power consumption
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Overview: Process Flow
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【goal】extract features with low power consumption 
while maintaining versatility

DNN etc.
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Overview: Comparison with Prior Research

• More versatile
• Better feature 

extraction
• High power efficiency
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① 
High FFT points, 
Low power

②
Filter-rich with 
power savings

③
Reduced clock cycles 
and iterations



Proposed Method Details 1:  FFT Implementation Based on R22SDF

Our approach

• Serial implementation using the radix-22 algorithm
• Reduces additions and multiplications

• Simplifies with a serial implementation

7

The most power-consuming part

log mel-
spectrogram

FFT

proposal1

Mel 
Filterbank

proposal2

Log

proposal3



Proposed Method Details 1:  FFT Implementation Based on R22SDF

Algorithm radix 2 radix 4 radix 22

note the radix of the 
butterfly operation is 2
(the most basic)

the radix of the 
butterfly operation is 4

the radix of the 
butterfly operation is 
virtually 4

additions and 
multiplications

serial implementation

more calculations fewer calculations fewer calculations

Transforming the equation to set the first twiddle factor to −j makes the iteration radix 4

8simple complex rather simple

repeating 
structure



Proposed Method Details 2: Zero-skipping mel filterbank

• A single feature map is formed by MACing each low-pass filter 
with FFT output and merging all MAC results

• The characteristics of mel filterbank are independent of sound 
recognition tasks 

 → Can be stored in ROM on hardware
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A collection of filters
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log mel-
spectrogram

FFT

proposal1

Mel 
Filterbank

proposal2

Log

proposal3• Mel filterbank: most filter coefficients are zero
• Each filter acts as a low-pass filter

→ introducing zero-skipping

• Compress the filter matrix size to 1/25
• Number of multiplications reduced to 1/25



Proposed Method Details 3: LogLUT

Logarithmic calculations generally require many cycles due to 

iterative computation

→ Ours: Reduce cycles by using an LUT
 

ln x = log2x・ln2

const; 
can be stored in ROM

Approximate natural logarithm circuit using an LUT

10

log mel-
spectrogram

FFT

proposal1

Mel 
Filterbank

proposal2

Log

proposal3

Accurate approximation for audio extraction:
 Only 2.20% average error 
 compared to NumPy log results



Evaluations: Chip Implementation

• Implemented in 40nm CMOS

• 2064 cycles required for computation (4.13 ms delay at 500 kHz)

• Chip implementation area: 2340µm × 174 µm

• Power consumption: 250.3 μW at 1.1V
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Evaluations: Accuracy Comparison on Sound Recognition

• Inferential performance of (3 kinds of LogMel) + DNN simulated for 

sound recognition tasks

Results
• only 3.2% accuracy drop compared to Numpy

• 16.3% improvement compared to N=256 HW FFT

→ Enough FFT data points N are essential 
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Evaluations: Performance Comparison (Power Efficiency etc.)

Achieves versatility and high power efficiency

• Various applications

• Power efficiency equal to or greater than conventional 
ASICs

• Digital configuration 
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Conclusions

Our versatile & energy-efficient audio feature extractor

• FFT: N=1024 & serial implementation of radix-22 algorithm

• mel filterbank: 64-ch & zero-skipping

• log: LUT
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