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Abstract—A 250.3µW always-on sound feature extractor 
that facilitates general-purpose sound recognition AI processing 
encompassing 35-word voice command recognition, 
environmental sound recognition, and musical instrument 
recognition is developed. Conventionally, approximated mel-
frequency cepstrum coefficients (MFCC) feature extractors 
composed of a limited number of FFT samples (256 points), and 
filter channels (10 channels) are utilized for energy reduction; 
however, their applicability is restricted to wake-up word 
recognition resulting in high NRE costs. To overcome these 
challenges, we developed a LogMel filter feature extractor 
employing a 1024-point FFT and 64-channel Mel filter bank, 
which enables versatile applications across a diverse range of 
sound recognition tasks including 35-word voice command 
recognition. To minimize circuit area and power consumption, 
three techniques are employed: (a) radix-22 single-path delay 
feedback (R22SDF) which uses serial FFT processing for circuit 
area reduction, (b) zero-skipping Mel filter bank for a 1/25x 
circuit area reduction by storing and accumulating only non-
zero elements, and (c) Log LUT, an LUT approximation to 
reduce the number of cycles by a factor of 20 compared with the 
CORDIC implementation. Designed and implemented in a 
40nm CMOS process, the proposed extractor demonstrates a 
power efficiency of 14.9nJ/frame/word for a 35-word voice 
command recognition task, showcasing a 1.1× improvement in 
power efficiency and a 17.5×  increase in the number of 
recognizable voice commands compared to state-of-the-art 
KWS-specific simplified MFCC audio extraction circuits. 
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I. INTRODUCTION 
Advances in speech recognition AI have significantly 

propelled the social implementation of speech information 
processing technologies. This has led to a growing interest in 
always-on voice applications. Their specific use cases include 
single wake-up word recognition known as keyword spotting 
(KWS) [1-4], environmental sound recognition, and sound 
recognition [5]. In recent years, there has been a surge in 
research on voice interface technology that can recognize a 
diverse range of commands and control wearable devices and 
drones. For these applications, it is essential to go beyond 
simple single-word keyword recognition and continuously 
recognize a larger set of commands, such as 30 words or more 
[3, 4]. Environmental sound recognition technology is utilized 
for detecting machine abnormalities, among other 
applications. Such diverse sound recognition AI models are 
expected to be processed on battery-powered wearable IoT 
devices. AI processors for continuous audio analysis must 
operate at or below 1mW [8] to ensure minimal impact on 
battery life in wearable devices. 

Existing sound recognition AI models employ a large 
number of FFTs and consume a lot of power. In conventional 
audio recognition software implementations, 1024-point FFT 
and 64-channel Mel filter bank have been widely used [5] to 
extract high-dimensional feature vectors that adequately 
represent speech signals. Implementing such a high-resolution 
FFT requires a significant number of computation blocks. For 
1024-point FFT, the FFT core alone requires a chip area of 8.3 
mm² and consumes 3.7 mW at 30 MHz in 65 nm CMOS 
technology [6]. 

In pursuit of audio analysis below, AI processors have been 
developed that employ highly simplified audio feature 
extractors and binary weight DNNs (Fig. 1 (a)). For speech 
recognition tasks, sound feature extractors are widely used 
that extract a 2D feature map from sound information and feed 
its output to a subsequent DNN. However, the implementation 
of these sound feature extractors consumes large power 
mainly due to the high computational cost of FFT compared 
to DNNs [1]. To reduce power and area, task-specific sound 
feature extractors have been proposed in [1-3]. These 
approaches achieve good power efficiency by drastically 
reducing the number of FFT points from 1024 to 256 or fewer 
and minimizing the number of band-pass filters from 64 to 10, 
tailoring the design to small and specific tasks. However, their 
applicability is limited due to the insufficient feature 

 

 
Fig. 1 Sound feature extractor comparison 
(a) 10ch MFCC with 256-point FFT and 

(b) our 64ch LogMel with 1024-point FFT.  



extraction for generalizability across different applications 
and the inability to adapt to other tasks, leading to high non-
recursive engineering (NRE) costs. 

This research introduces a general-purpose sound feature 
extractor that employs a LogMel filter to achieve low NRE 
cost and low power consumption below 1mW simultaneously. 
For example, our chip can accommodate additions or changes 
to voice commands without changing the hardware, resulting 
in low NRE costs while consuming less than 1mW.  Featuring 
a 1024-point FFT and 64-channel Mel filter bank, it facilitates 
versatile applications including 35-word speech command 
recognition, environmental sound recognition, and musical 
instrument recognition [5] (Fig. 1 (b)). We skip the discrete 
cosine transform that is performed in MFCCs and output the 
result directly. This allows us to obtain feature maps with 
more information content, as the frequency-domain features 
are not compressed. It is known that using the same CNN, 
higher accuracy can be achieved with LogMel features 
compared to MFCCs [7]. Although the noise reduction ability 
of LogMel features is lower than that of MFCCs, this is not a 
problem because CNNs have high noise immunity due to max 
pooling layers. 

Designed in 40nm CMOS, our test chip exhibits a power 
consumption of 250.3µW, demonstrating a 1.1 × 
improvement in energy efficiency per keyword compared to 
the sparse sound feature MFCC filter optimized for keyword 
recognition (Table I). When combined with a sound-specific 
AI processor [4] that processes 16-layer audio DNNs in 14 
bits, it is possible to process a wide-range of sound recognition 
tasks at 400µW.  

II. PROPOSED LOGMEL-BASED VERSATILE  
SOUND FEATURE EXTRACTOR  

A. R22SDF (Radix-22 single-path delay feedback) 
In this study, the raidx-22 FFT computation method and a 

serial FFT architecture are employed. In the radix-2 and 
radix-4 algorithms, the FFT is recursively divided into 
smaller FFT sub-stages consisting of data-reordering 
butterfly operations and twiddle factor multiplications. This 
reduces the computational complexity from 𝑂(𝑁!)  to 
𝑂(𝑁𝑙𝑜𝑔𝑁). Compared to the radix-2 algorithm, where the 
radix of the butterfly operation is 2, the radix-4 algorithm can 
reduce the number of multiplications by 25% and the number 
of additions by approximately 6%. On the other hand, a 
drawback of the radix-4 algorithm is that when attempting to 
implement it in hardware using a serial architecture, the 
control structure becomes more complex. 
The radix-22 algorithm was developed in [7] to inherit the 

simple control structure of radix-2 but achieve identical 
computational requirements as radix-4. By grouping two 
stages of the radix-2 algorithm into one set and transforming 
the equation so that the first twiddle factor multiplication 
becomes multiplication by − j, the radix-22 algorithm 
effectively changes the base of iteration to 4 (Fig. 2 (a)). 
Owing to the transformation, radix-22 has the simple logical 
circuit structure of radix-2 and the same low computational 
cost as radix-4. To reduce the circuit area, we employed 
R22SDF, a serial implementation of radix-22 (Fig. 2 (b)).  

B. Zero-Skipping Mel-Filter Bank 
In a Mel-filter bank, the output of a low-pass filter for each 

channel is multiplied and accumulated (MAC) with the output 
of the FFT. By concatenating the MAC results of all the 
channels, a single feature map can be constructed and output. 
Each Mel-filter is a low-pass filter based on the characteristics 
of human hearing, and each filter passes only a specific 
frequency band (Fig. 3). The characteristics of these filters can 
be stored in a ROM on the hardware since they are always 
constant when the number of filters, frequency bands, and the 
number of FFT points are fixed, and independent of sound 
recognition tasks. 

As the number of filters increases, the ROM capacity and the 
number of MAC units for parallel processing also increase. In 
this study, we developed a zero-skipping Mel-filter bank to 
reduce ROM capacity and computational complexity even 
when the number of channels increases. Most of the Mel-filter 
values are zero. Each filter is configured to pass only signals 
in a specific frequency band. In the specific frequencies 
corresponding to the FFT, out of 64 filters, at most only 2 
filters have non-zero values, while all others are zero. 
Therefore, we adopted the compressed sparse column (CSC) 
format, which stores only the non-zero values of the filter 
along with their filter identifiers and positions within the filter. 
The CSC format reduces the size of the filter coefficient 
matrix from 853,632 bits to 33,858 bits, a reduction of about 
1/25.2. Since the ROM area is proportional to the size of the 
filter matrix to be stored, the ROM area is reduced by 25.2. 

 
 

Fig. 2 R22SDF Circuit Diagram 

Table I Performance comparison on KWS task 

 



In addition to the CSC format for reducing ROM size, we 
also propose a zero-skipping multiplier for efficient 
computation. When the filter coefficient is a zero element, the 
data is not moved to the multiplier to reduce power. A constant 
zero is output. When the filter coefficient is non-zero, an EN 
signal is issued, the multiplier's power is turned on, and the 
calculation is performed. The output is switched from a fixed 
zero to the multiplier output. 

In LogMel, the filter coefficients for each channel are always 
constant, and the positions of the non-zero bits are also fixed. 
Therefore, the controller can remember the positions of the 
non-zero bits for each channel easily by storing them in ROM, 
making it possible to reuse the controller for a wide range of 
applications. The output of the FFT is transmitted serially 
from low frequency to high frequency, so the timing of the EN 
signal can be easily detected by using a counter. These 
processes make it possible to reduce the number of 
multiplications and power consumption by a factor of 1/25.2, 
similar to the reduction in filter coefficient matrix size. 

C. Log LUT 
A large number of cycles is required for LogMel due to the 
use of CORDIC circuits for natural logarithm calculations. In 
LogMel, the output signal of the Mel filter bank passes 
through a natural logarithm function to produce the final 
feature map. Natural logarithm calculations are typically 
performed using CORDIC circuits. Since the accuracy is 
gradually improved through iterative calculations, a certain 
number of iterations is required. In previous studies, 20 
iterations were needed [9]. At least 1280 cycles would be 
required for the above case, which is greater than the number 
of cycles for other computation blocks (serial FFT, zero-
skipping Mel filter bank). This causes a performance 
bottleneck for processing latency. 
We propose a natural log circuit using LUT to reduce the 

number of cycles. First, the natural logarithm calculation is 
converted to a logarithmic calculation with base 2 (Eq. (1)). 
 

𝐿𝑛(𝑥) = 𝑙𝑜𝑔!(𝑥) ∗ 𝑙𝑛2																		(1)	 

The value of 𝐿𝑛2 is precomputed in advance and stored in 
ROM. The value of 𝐿𝑜𝑔!(𝑥) is obtained by looking it up in a 
table. The LUT uses the position of the highest-order bit set to 
1 as its key, and the approximate value of 𝐿𝑜𝑔!(𝑥)  as its 
value. Since this requires just referencing the LUT stored in 
ROM, the number of cycles is drastically reduced from 1280 
to 64. For example, for 𝑥 =00100101 in binary digits (37 in 
decimal), the value of 𝐿𝑜𝑔!(𝑥) is approximated as ≈5. Since 
the value of 𝐿𝑜𝑔!(37𝑠  is 5.2, 𝐿𝑜𝑔!(𝑥) ≈ 5  is a good 

approximation. After calculating 𝐿𝑜𝑔!(𝑥) , scaling 
adjustments are performed by adding the scale factor. The 
factor is constant after setting 1024-point FFT and Mel filter 
banks and stored in scale factor ROM. The eval signal is 
issued after finishing computing Mel filter bank MACs to start 
computing the Log LUT. We compared the results of a 64-bit 
calculation of 𝐿𝑛(𝑥) for sound data using Python's Numpy 
library with the results of the 14-bit calculation using the Log 
LUT method described above. The average error rate was 
2.20%. Therefore, good approximation is realized. 

III. EXPERIMENTAL RESULTS 

A. Chip Implementation 
 The proposed approximated LogMel filter-based versatile 
sound feature extractor was implemented using 40nm CMOS. 
The chip implementation area is 2340𝜇𝑚 × 174𝜇𝑚 .The 
number of clock cycles required for the calculation is 2064 
cycles. At a clock frequency of 500 kHz, the delay time for 
LogMel processing is 4.13 ms. The power consumption is 
250.3 µW at 500 kHz with a nominal supply voltage of 1.1 V. 
The processing energy is 521.5 nJ/frame. 

B. Sound Recognition Performance 
The inferential performance of the LogMel feature extractor 

combined with DNN processing was simulated for various 
sound recognition tasks [5]. The wired-logic processor 
proposed in Ref. [4] was used as the DNN processor model. 
The dataset and tasks were environmental sound recognition, 
musical instrument recognition, and KWS. The training 
results for each task and a comparison to the baseline software 
implementation (FP 64bit, Python implementation) are shown 
in Table-II. The average accuracy drop is only 3.2%. In 
addition, the recognition accuracy is significantly improved 
by 16.3 % compared to the feature extractor using a 128-point 
FFT, which has been used in conventional always-on 
applications.  

 
 

Fig 3. Zero-skipping Mel-filter bank and MAC unit 

  
Fig 5. Log LUT approximation simulation results 

  
Fig 4. Log LUT computation circuit 



C. Performance Comparison  
 The results obtained are compared with previously reported 
keyword spotting recognition ASICs for always-on 
applications (Table-III). Owing to the 1024-point FFT and 
the Mel filter bank with a large amount of information, not 
only KWS with 35 words but also language recognition and 
environmental sound recognition are possible. The energy 
efficiency of KWS (14.9 nJ/frame/word) is as good as or better 
than that of conventional ASIC implementations while 
realizing low NRE costs. Conventional analog 
implementation can achieve better energy efficiency, but they 
are easily affected by PVT variations and require a large 
implementation area. On the other hand, our processor is pure 
digital and it is robust against PVT variations and has a smaller 
chip area. 

IV. CONCLUSIONS 
A 250.3µW always-on sound feature extractor that facilitates 
general-purpose sound recognition AI processing 
encompassing 35-word voice command recognition, 
environmental sound recognition, and musical instrument 
recognition has been implemented. We developed a LogMel 
filter feature extractor employing a 1024-point FFT and 64-
channel Mel filter bank, enabling versatile applications across 
a diverse range of sound recognition tasks, including 35-word 
voice command recognition. Owing to the use of R22SDF FFT, 
zero-skipping Mel filter bank and the Log-LUT computing 
method, our chip satisfies both low-power consumption and 
low-NRE costs simultaneously. The proposed extractor 
fabricated in 40 nm CMOS demonstrates a power efficiency 
of 14.9 nJ/frame/word for a 35-word voice command 
recognition task, showcasing a 1.1× improvement in power 

efficiency and a 17.5× increase in the number of recognizable 
voice commands.  

Our general-purpose speech feature extractor realizes low 
power consumption, high area efficiency, and applicability to 
a wide variety of applications simultaneously. The NRE cost 
is low and it is expected to become a fundamental technology 
for sound interfaces for various kinds of industrial 
applications. 
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Table III Performance comparison with state-of-the arts 

 

 
Fig 6. Chip implementation results. 

Table II Accuracy Comparison on Sound Recognition 
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